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1.     ABOUT RIMA INTERNATIONAL 
 
The Reflective Insulation Manufacturers Association International (RIMA-I) is the only trade association representing 
the reflective insulation, radiant barrier and radiation control coatings industries.  RIMA-I activities are guided by an 
active board of industry members that participate on national and local levels of building code organizations and 
governmental agencies. 
 
RIMA-I’s objective is to further the understanding and acceptance of reflective insulation, radiation control coatings, 
and radiant barriers.  Toward this, RIMA-I members have contributed many articles and information that have 
appeared in magazines and newsletters such as: 
 
Builder, Journal of Light Construction, Popular Mechanics, Popular Science, Architecture, RSI, Energy Design 
Update, Contractor’s Guide, Practical Homeowner, Rural Builder, Metal Magazine, Frame Builder NEWS, Metal 
Construction News, and Metal Architecture. 
 
RIMA-I has also contributed technical papers to various conferences and workshops sponsored by the Department of 
Energy, ASHRAE, TVA, ASTM, and Oak Ridge National Laboratory.  RIMA-I members meet twice a year in 
conjunction with the ASTM C-16 Committee meetings to discuss current technical issues and establish standards 
that promote the best use of reflective insulation, radiation control coatings, and radiant barrier products.  RIMA-I’s 
members come from a variety of backgrounds including engineers, scientists, manufacturers, marketers, and 
academicians.                   
 
The RIMA-I Handbook aims to provide a simple yet comprehensive guide elaborating on the fundamentals of heat 
transfer and the concept of reflective insulation, radiant barriers and interior radiation control coatings (IRCCs’). 
 

2.     INTRODUCTION 
 
The key to maintaining a comfortable temperature and reduced energy cost; in a building is to reduce the heat 
transfer out of the building in the winter and reduce heat transfer into the building in the summer. 
 
Heat is transmitted across confined air spaces by radiation, convection, and conduction.  The goal is to reduce 
heating and cooling loads.  Reflective insulation, radiant control coatings, and radiant barriers are products that 
perform this function by reducing radiant heat transfer thereby reducing the heating and cooling requirements. 
 

3.     OBJECTIVES 
 

• Discuss heat transfer, with an emphasis on radiant heat transfer. 
 

• Explain the underlying principles of reflective insulation, radiant barriers and interior radiation control coatings. 
 

• Clarify the differences between these three reflective technologies and illustrate applications best suited to each 
product. 
 

• Provide a working knowledge of the effective use of reflective insulation, radiant barriers and interior radiation 
control coatings.  

 
The handbook does not intend to be a definitive source, but will cover some basic information.  There are a large 
number of excellent authoritative publications about reflective technologies and products.  They are listed in section 
10, References, and are recommended for additional information and guidance.  Our purpose in this section is to 
inform in an easily understandable way, the virtues of the reflective products represented by RIMA-I members. 
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4.     FUNDAMENTALS OF HEAT TRANSFER 
 
Heat flows from a hot or warm medium to a cold medium in three ways: 
 

• By radiation from a warm surface to a cooler surface through an air space 

• By conduction through solid or fluid materials 

• By convection, which involves the physical movement of air 
 
4.1     Conduction 
 
Conduction is the direct flow of heat through a material resulting from physical contact.  The transfer of heat by 
conduction is caused by molecular motion in which molecules transfer their energy to adjoining molecules and 
increase their temperature. 
 
 

 
 

 
 
 

 
 

 
 
 

 
A typical example of conduction would be the heat transferred from hot coffee, through the cup, to the hand holding 
the cup.  Another example, as shown above, the contents of the kettle boils from heat transferred from the burner to 
the kettle.  Also, a poker becomes hot from contact with hot coals. 
 
Heat transfer by conduction is governed by a fundamental equation known as Fourier’s Law. 
 
(Rate of Heat Flow) = - k x (Area) x (Temperature Gradient) 
 
The factor k is called thermal conductivity or in the case of many insulation materials “apparent thermal conductivity”. 
This property is characteristic of the material and it varies with temperature, density (degree of compaction), and 
composition. Some typical thermal conductivity and thermal resistivity data are given in the following table for the 
purpose of comparison. 
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Material 

 
k-value1,2 

 
R/inch3 

Sawdust 0.36 2.8 

Wood Shavings 0.41 2.4 

INSULATION 

Std. Fiberglass Batt 0.313 3.2 

High Performance Fiberglass 
Batt 

0.263 3.8 

Loose-Fill Fiberglass 0.400 2.5 

Loose-Fill Rock Wool 0.357 2.8 

Loose-Fill Cellulose 0.270 3.7 

Expanded Polystyrene 0.263 3.8 

Extruded Polystyrene 0.200 5.0 

GASES 

Air 0.181 5.5 

Carbon Dioxide 0.115 8.7 

Helium 1.04 0.96 

Methane 0.237 4.2 

LIQUIDS 

Ethylene Glycol 1.80 0.56 

Gasoline 0.94 1.06 

Water 4.19 0.24 

METALS 

Aluminum 1890 0.00053 

Copper 2760 0.00036 

Iron 555 0.0018 

Lead 240 0.0042 

MISCELLANEOUS BUILDING MATERIALS 

Acoustical Tile 0.40 2.5 

Asphalt 5.2 0.19 

Concrete (140 lb/ft3) 12.0 0.08 

Cotton (6 lb/ft3) 0.30 3.3 

Window glass 6.10 0.16 

Soil  4-20 0.25-0.05 

Fir 0.76 1.3 

Oak 1.18 0.85 

Yellow Pine 1.04 0.96 

Plywood 0.83 1.2 
(1) Values shown are at 75oF (approximately 300K) 
(2) Nominal values in Btu�in./ft2�hr�oF  

(3) Thermal resistivity in ft2�hr�oF/Btu�in. 

 
4.2     Convection 
 
Convection in buildings is the transfer of heat caused by the movement of heated air.  In a building space, warm air 
rises and cold air settles to create a convection loop and is termed free convection.  Convection can also be caused 
mechanically, (termed forced convection), by a fan or by wind. 
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In the flow of heat through a solid body to air, it was observed that the passage of heat into the air was not 
accomplished solely through conduction.  Instead, it occurred partly by radiation and partly by free convection.  A 
temperature difference existed between the hot solid and the average temperature of the air.  In this case, the 
resistance to heat transfer cannot be computed using the thermal conductivity of air alone.  Instead, the resistance 
has to be determined experimentally by measuring the surface temperature of the solid, the temperature of air, and 
the heat transferred from the solid to air.  The resistance computed is the combined resistance of conduction, free 

convection, and radiation.  This resistance, denoted by the letter “R”, has the units of (hr⋅ft2⋅°F/Btu) and is commonly 
used to indicate the thermal characteristics of insulation materials. 
 
4.3 Radiation 
 
Radiation is the transfer of heat (infra-red radiant energy) from a hot surface to a cold surface 
through air or vacuum.  All surfaces including a radiator, stove, a ceiling or roof and ordinary 
insulation radiate to different degrees.  The radiant heat is invisible and has no temperature, 
just energy.  When this energy strikes another surface, it is absorbed and increases the 
temperature of that surface.  This concept can be understood with the following example: On a 
bright sunny day, radiant heat from the sun travels through a car’s window, strikes the steering 
wheel and is absorbed, causing it to rise in temperature. 
 
Radiation from the sun strikes the outer surfaces of walls and roofs and is 
absorbed causing the surface to heat up.  This heat flows from the outer wall 
to the inner wall through conduction which is then radiated again, through the 
air spaces in the building, to other surfaces within the building.   

 
 
There are two terms commonly encountered while discussing radiant heat 
transfer: 
 
1. Emittance (or emissivity), refers to the ability of a material’s surface to emit radiant energy.  All materials have 

emissivities ranging from zero to one.  The lower the emittance of a material, the lower the heat (infra-red radiant 
energy) radiated from its surface.  Aluminum has a very low emittance, which explains its use in reflective 
insulation and radiant barriers. 

 

Typical examples of heat 
transfer through convection: 
 
1. Warm air rising from register. 

(forced  convection) 
 
2. Warm air rising from all 

surfaces of radiator, (after air 
in contact with radiator has 
been heated by conduction). 

 
3. Warm air rising from chimney. 

(free convection) 
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2. Reflectance (or reflectivity) refers to the fraction of incoming radiant energy that is reflected from the surface.  
Reflectivity and emissivity are related and a low emittance is indicative of a highly reflective surface.  For 
example, aluminum with an emissivity of 0.03 has a reflectance of 0.97.   

 
The emittance of various surfaces is listed in the following table2. 
 

 
Material Surface 

 
Emittance 

Asphalt 0.90-0.98 

Aluminum foil 0.03-0.05 

Brick 0.93 

Concrete 0.85-0.95 

Glass 0.95 

Fiberglass/Cellulose 0.8-0.90 

Limestone 0.36-0.90 

Marble 0.93 

Paint: white lacquer 0.80 

Paint: white enamel 0.91 

Paint: black lacquer 0.80 

Paint: black enamel 0.91 

Paper 0.92 

Plaster 0.91 

Silver 0.02 

Steel (mild) 0.12 

Wood 0.90 

 

 

5.     THE NEED FOR INSULATION 
 
When installed correctly, insulation reduces the heat transfer through the envelope of a building.  Whenever there is 
a temperature difference, heat flows naturally from a warmer space to a cooler space.  To maintain comfort in winter, 
the heat lost must be replaced by the heating system; and in summer, the heat gained must be removed by the 
cooling system.  Statistics show that 50% to 70% of the energy used in the average home in the United States and 
Canada is for heating and cooling.  It makes sense to use thermal insulation to reduce this energy consumption, 
while increasing comfort and saving money.  Naturally, less consumption of fossil fuels and the energy produced 
from them relieves the burden our ecosystem must bear. 
 
To summarize, insulating the envelope of a building’s conditioned space yields these key benefits: 
 
1. Provides a much more comfortable, productive and livable structure.  In addition, the effects of moisture 

condensation and air movement are minimized in well-insulated buildings.  This results in lower maintenance 
costs and increased longevity of the building structure.   

 
2. Reduces energy requirements, which lowers utility bills. 
 
3. Supports economic, environmental and energy conservation goals.  This is evidenced by the numerous studies 

sponsored by the Department of Energy. 
 
Heat moves through wall cavities or between roofs and attic floors by radiation, conduction, and convection.  In some 
buildings, radiation is the dominant method of heat transfer.  A reflective insulation is an effective barrier against 
radiant heat transfer because it reflects almost all of the infrared radiation striking its surface and emits very little of 
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the heat conducted through it.  By virtue of its impermeable surface, reflective insulation also reduces convective 
heat transfer.  Mass insulation like fiberglass or foam board primarily slows conductive heat transfer, and to a smaller 
extent, convective heat transfer.  However, mass insulation is not as effective against infrared radiation, actually 
absorbing it rather than reflecting or blocking it. 
 

6.     REFLECTIVE INSULATION 
 
Definition:  Thermal insulation consisting of one or more low emittance surfaces, bounding one or more enclosed air 
spaces. 
 
6.1     Concept of Reflective Insulation 
  
Standard types of insulation, such as fiberglass, foam, and cellulose primarily reduce heat transfer by trapping air or 
some type of a gas.  Thus, these products or technologies reduce convection as a primary method of reducing heat 
transfer.  They are not as effective in reducing radiant heat transfer, which is often a primary mode of heat transfer in 
a building envelope, in fact, these products, like most building materials, have very high radiant transfer rates.  In 
other words the surfaces of standard types of insulation are good radiators of heat. 
 
Reflective insulation uses layers of aluminum foil or metalized film, paper, and/or plastic to trap air and thus reduce 
convective heat transfer.  The aluminum foil or metalized film component however is very effective in reducing radiant 
heat transfer.  In fact, the metalized and foil materials commonly used in reflective insulation will reduce radiant heat 
transfer by as much as 97%. 
 
Heat flow by radiation has been brought to the public’s attention with high efficiency windows, which commonly use 
the term “Low E” to advertise the higher performance ratings.  The “E” stands for emittance and the values range 
from 0 to 1, with 0 being no radiation and 1 is the highest measure of emittance or radiation.  Most building materials, 
including fiberglass, foam and cellulose have surface emittances or “E” values in excess of 0.70.  Reflective 
insulations typically have “E” values of 0.03 (again, the lower the better).  Therefore, reflective insulation is superior to 
other types of insulating materials in reducing radiant heat.  The term reflective, in reflective insulation, is in some 
ways a misnomer, because aluminum either works by reflecting heat (reflectance of 0.97) or by not radiating heat 
(emittance of 0.03).  Whether stated as reflectivity or emissivity, the performance (heat transfer) is the same.  When 
reflective insulation is installed in building cavities, it traps air (like other insulation materials) and therefore reduces 
heat flow by convection, thus addressing all three modes of heat transfer.  In all cases, the reflective material must be 
adjacent to an air space.  Aluminum, when sandwiched between two pieces of plywood for example, will conduct 
heat at a high rate.  
 
All insulation products including reflective insulation are measured by R-values, whereby the “R” means resistance to 
heat flow.  The higher the R-value, the greater the insulating or thermal performance of the material. 
 
Reflective insulation is a non-toxic, user and building owner safe and environmentally safe building material.  In 
addition, the products are typically recyclable and thus can be termed a Green Building Material. 
 
Another benefit is that the reflective insulation can also serve as a high performance and thus effective vapor barrier. 
 
6.2     Understanding a Reflective Insulation System (RIS) 
 
Layers of aluminum or a low emittance material and enclosed air spaces, which in turn provide highly reflective or low 
emittance cavities adjacent to a heated region, typically form a reflective insulation system.  Some reflective 
insulation systems also use other layers of materials such as paper or plastic to form additional enclosed air spaces.  
The performance of the system is determined by the emittance of the material(s), the lower the better, and the size of 
the enclosed air spaces.  The smaller the air space, the less heat will transfer by convection.  Therefore, to lessen 
heat flow by convection, a reflective insulation, with its multiple layers of aluminum and enclosed air space, is 
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positioned in a building cavity (stud wall, furred-out masonry wall, floor joist, ceiling joist, etc.) to divide the larger 
cavity (3/4” furring, 2” x 4”, 2” x 6”, etc.) into smaller air spaces.  These smaller trapped air spaces reduce convective 
heat flow.  
 
Reflective insulation differs from conventional mass insulation in the following: 
 

1. Reflective insulation has very low emittance values “E-values” (typically 0.03 compared to 0.90 for most 
insulation) thus significantly reduces heat transfer by radiation; 

2. A reflective insulation does not have significant mass to absorb and retain heat; 
3. Reflective insulation has lower moisture transfer and absorption rates, in most cases; 
4. Reflective insulation traps air with layers of aluminum, paper and/or plastic as opposed to mass insulation 

which uses fibers of glass, particles of foam, or ground up paper; 
5. Reflective insulation does not irritate the skin, eyes, or throat and contain no substances which will out-gas; 
6. The change in thermal performance due to compaction or moisture absorption, a common concern with 

mass insulation, is not an issue with reflective insulation. 
 
6.3     Types of Reflective Insulation Materials 
 
Reflective insulation has been used effectively for decades and is available throughout the world.  The following are 
the major types of reflective insulation currently available: 
 

1. Layer or layers of aluminum foil or metalized film separated by a layer or layers of plastic bubbles or a foam 
material; 

2. Multiple layers of aluminum, kraft paper, and/or plastic with internal expanders an flanges at the edge for 
easy installation; 

3. Single layer of aluminum foil or metalized film laminated to a kraft paper or plastic material when 
encapsulated with an adjacent air space. 

 
6.4     Applications for Reflective Insulation Materials 
 
Reflective insulation materials are designed for installation between, over, or under framing members and as a result, 
are applicable to walls, floors, and ceilings.  Applications for reflective insulation extend too many commercial, 
agricultural and industrial uses, such as panelized wood roofs, pre-engineered buildings, pole barns and other wood 
framed structures.  A few representative applications are listed below: 
 

• Residential Construction, New and Retrofit 
 Walls, basements, floors, ceilings, roofs, and crawl spaces. 
 

• Commercial Construction, New and Retrofit 
 Walls, floors, basements, ceilings, roofs, and crawl spaces. 
 

• Manufactured Housing Construction, New and Retrofit 
 Walls, floors, roofs, and crawl spaces. 
 

• Other Uses, New and Retrofit 
Water heater covers, cold storage units, poultry, and livestock buildings, equipment sheds, pipe 
insulation and recreational vehicles. 
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Reflective Insulation in a Typical Basement Installation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.5     Installing Reflective Insulation Systems 
 
Reflective insulation products incorporate trapped air spaces as part of the system.  These air spaces, which may be 
layered or closed-cell, can be included in the system either when the product is manufactured or while it is being 
installed.  In either case, the advertised performance of the insulation requires that these air spaces be present after 
the product is installed.  The labeled R-values will not be achieved if the product is not installed according to the 
instructions of the manufacturer. 
 
The thermal performance of the reflective system varies with the size and number of enclosed reflective spaces 
within the building cavity.  Most reflective systems range from one to five enclosed air spaces. 

 
 
 
 
 
 
 
 
 

A Typical Attic Installation for 

Reflective Insulation 
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Air spaces in typical Reflective Insulation System 
 
                     

 
 
 
 
 
 
 
 
 
 
 
 
 
There are other beneficial considerations for using reflective insulation.  Generally, these products have a very low 
water vapor and air permeance.  When installed properly, with joints taped securely, reflective insulation materials 
are efficient vapor retarders and an effective barrier to air and radon gas.   
 
Since reflective insulation materials are effective vapor retarders, care should be taken to ensure that they are 
installed correctly within the structure.  Correct installation depends on the climatic conditions and moisture sources 
involved.  An appropriate installation ensures that all joints and seams are butted against each other and taped, or 
overlapped and taped.  This will reduce the possibility of moisture condensation within the cavity and improve 
performance. 
 

7.     RADIANT BARRIERS 
 
Definition:  The generally accepted definition of a radiant barrier system specifies that the reflective material face an 
open air space.  The idea is that a radiant barrier facing an enclosed air space is a “reflective insulation” with a 
measurable R- value.   
 
7.1     Physics of Radiant Barriers 
 
A “radiant barrier” is a reflective/low-emittance surface as defined by ASTM where the emittance is 0.10 or less on or 
near a building component that intercepts the flow of radiant energy to and from the building component.   
 
The aluminum foil shields that are commonly inserted behind radiators in older houses are radiant barriers, blocking 
radiant heat transfer from the radiator to the exterior wall.   
 
It should be clearly understood that although a radiant barrier reduces heat loss and gain through the building 
envelope because it is installed in vented cavities (like attics), it is not an insulation material per se and has no 
inherent R-value. 
 
7.2     Radiant Barrier Systems (RBS) 
 
A “radiant barrier system” (RBS) is a building section that includes a radiant barrier facing an air space.  An attic with 
a radiant barrier on top of the mass insulation on the floor, or under the roof is an RBS.  A vent skin wall with a 
radiant barrier facing the vented air space is also an RBS. (See diagram on page13.) 
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The distinction between a radiant barrier “material” and radiant barrier “system” is not merely academic.  In an attic, 
the effectiveness of a radiant barrier is significantly affected by the amount of attic ventilation.  A vented attic with a 
radiant barrier is a very different system from an unvented attic with the same radiant barrier. 
 
7.3     Types of Radiant Barrier Material 
 
Several types of radiant barrier materials are available.  Although they all have similar surface properties (and 
consequently similar performance), variations in materials and construction result in significant differences with 
respect to strength, durability, flammability and water vapor permeability. 
 
Most products available commercially fall into two major categories: 
 

1. Aluminum Foil Laminates - foil laminated to kraft paper, plastic films, or to OSB/plywood     roof sheathing 
2. Aluminized Plastic Films  - a thin layer of aluminum particles deposited on film through vacuum process 

 
7.4     Installing Radiant Barriers 
 
7.4.1     Attics 
 
The most common location for a radiant barrier system is in attics.  Three basic configurations are used: 
1. Rafter/truss installation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2. Under, or pre-laminated to, roof sheathing 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A radiant barrier can be draped over rafters 

with the foil facing down. 

 

Roof 

Decking 

Top Cord of Truss 

Staples 

Truss Radiant 
Barrier 



 __________________________________________________________________________________________________________________________________________  

 __________________________________________________________________________________________________________________________________________  

- 11 - 

 

 
 
3. Horizontal installation (directly above ceiling and/or ceiling insulation) 
 

RIMA-I acknowledges the placement of a radiant barrier on top of mass insulation in attic spaces subject to the 
following conditions: 
 

• The mass insulation and ceiling building materials should be checked for any evidence of moisture 
accumulation.  Any existing moisture problem should be corrected before installing the radiant barrier. 

• Radiant barriers used for this application must have a water vapor transmission per of at least five (5), as 
measured by ASTM E-96. 

• Installation should be accomplished by laying the radiant barrier materials on top of the attic insulation 
without stapling or taping, so that it has very loose contact with the material below. 

• Radiant barriers for this application should meet a Class A, Class 1 flame spread and smoke development 
rating as determined by ASTM E-84. 

• The potential for contamination of the top surface by dust or dirt must be considered in specific applications 
where applicable. 

• As with all building materials, local building codes should be considered. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As noted before, a vented attic with a radiant barrier is a very different system from an unvented attic with the same 
radiant barrier.  Common types of attic ventilation are: 
 

• Soffit to ridge 

• Soffit to gable 

• Soffit to soffit 

• Gable to gable 
 

Most codes require at least a 1 to 300 ventilation rate.  What this means is that for every 300 square feet of floor 
space, there should be one square foot of free vent area. 
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7.4.2     Walls 
 
A very effective technique for walls is a vented skin wall using a radiant barrier.  Furring strips are used to separate 
the outer skin from the internal structural wall.  The wall is wrapped with a radiant barrier facing the vented air space.  
Vents are used at top and bottom to allow the heated air to rise naturally to the attic, where it is vented out through 
the roof vents. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TECHNICAL NOTE: Radiant barriers which are non-perforated are vapor barriers.  Care should be exercised with 
placement! 
 
7.4.3     Floors 
 
Radiant barriers can also be used in floor systems above unheated basements and crawl spaces.  The radiant barrier 
is either stapled to the underside of floor joists, creating a single reflective air space, or between the joists, followed 
by some type of sheathing, creating two separate reflective air spaces as shown below. 
 
Radiant barriers are an ideal choice for this application because, in addition to their excellent thermal properties, they 
are also vapor barriers that prevent ground moisture from migrating into the living space above. 

 
8.     INTERIOR RADIATION CONTROL COATINGS (IRCC) 
 
8.1     Definition of an IRCC 
 
As characterized by ASTM, an Interior Radiation Control Coating is a non-thickness dependent, low emittance 
coating.  When applied to building materials such as plywood, OSB, metal siding or plasterboard, according to the 
manufacturer’s installation instruction, it lowers the normal surface emittance of these materials to 0.24 or lower. 
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8.2     Physics of an IRCC 
 
An IRCC works by changing the emittance of the surface where it is applied.  Building products, such as wood, brick, 
painted surfaces and plasterboard exhibit high emissivities (0.7 - 0.95).  When heated above the temperature of 
adjacent surfaces, they radiate most of their heat energy to cooler surfaces.  An IRCC works by lowering their 
surface emittance to 0.24 or lower, lessening their ability to radiate heat. 
 
8.3     Definition of an Interior Radiation Control System (IRCCS) 
 
A building construction consisting of a low emittance (normally 0.25 or less) surface bounded by an open air space.  
An IRCCS is used for the sole purpose of limiting heat transfer by radiation and is not specifically intended to reduce 
heat transfer by convection or conduction.  (ASTM C 1321, section 3.2.3) 
 
Thus, an IRCCS is similar to a Radiant Barrier System (RBS) but is somewhat less efficient due to its higher 
emissivity and is comprised of a coating on a building surface, not a foil or film product. 
 
8.4     Advantages of an IRCC 
 
An IRCC is normally applied using airless spray equipment, resulting in very low labor costs and greatly reduced 
installation times.  Also, a water based IRCC can be safely installed in existing structures where the costs of installing 
foil or film products may be prohibitive or impractical.  An IRCC may also be used in many manufactured products 
(such as infrared heat reflectors of automotive parts) where it is impractical to adhere foil or film radiant barriers. 
 
8.5     Installation methods for an IRCC 
 
Since an IRCC is a coating, spray appling, either air atomization or airless is the most effective method of installation.  
Where spray appling is not practical.  An IRCC may be applied using a low nap roller.  Brush painting is usually 
impractical since these coatings are very low viscosity and not formulated for brush application. 
 
The IRCC may be applied to a building surface already in place (such as the underside of an installed roof deck or 
the inside of a wall) or it may be applied to a building component before it is installed (such as roof decking painted 
while laying on the ground before it is lifted into place.  Regardless when a building component is coated with and 
IRCC, it is imperative that after installation the surface coated with the IRCC face an air space. 
 
8.6 Typical installations of an IRCC 
 
8.6.1 Under Roof 
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8.6.2     Interior Side Walls 
 
IRCC materials can be installed on the interior side of walls in buildings. 
 
8.6.3     Exterior Side Walls 
 
IRCC materials can be installed on the exterior side of walls and covered with exterior coverings. 
 
8.6.4     Other Possible Uses - Construction 
 
An IRCC is a paint product and, therefore, it can be used on almost any solid surface where paint can be applied and 
where radiant heat transfer is a problem.  An example would be painting the inside of a boiler room to retain heat that 
might make adjacent areas uncomfortable.  Even painting the boiler itself might make it operate more efficiently.  
Freestanding heat shields in welding bays or at foundries can be painted with an IRCC.  Exterior roof surfaces may 
also be painted with an IRCC to repel summer heat and lower radiation losses in the winter. 
 
8.7     Other Possible Uses of an IRCC 
 
IRCC technology has many applications in manufacturing and industry.  It is used in the automotive industry to keep 
temperature sensitive parts and automotive interiors cool.  It is used in the lighting industry to make plastic reflectors 
for heat lamps and radiant heating devices.  It is used as a heat reflecting surface in industrial ovens.  It is used on 
high temperature process piping and storage tanks in chemical plants to lessen heat loss.  Any process or device 
that is temperature sensitive to infrared heat problems or uses reflected heat in its operation may be a candidate for 
IRCC technology. 

 
  

Roof Deck 

Ceiling Insulation Ceiling Joists 
Interior Radiation 
Control Coating 

Rafters 

Vented Attic Airspace 
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9. GLOSSARY OF TERMS 
 
Conduction:  Conduction is the direct flow of heat through a material resulting from physical contact.  The transfer of 
heat by conduction is caused by molecular motion in which molecules transfer their energy to adjoining molecules 
and increase their temperature. 
 
Convection: Convection is the transfer of heat in fluid or air, caused by the movement of the heated air or fluid itself.  
In a building space, warm air rises and cold air settles to create a convection loop and is termed free convection.  
Convection can also be caused mechanically by a fan and is termed forced convection.  
 
Emittance: Emittance refers to the ability of the surface to emit radiant energy.  Emissivity ranges from 0 to 1 and a 
lower value indicates a reflective surface with a low level of radiation. 
 
Interior Radiation Control Coating: A non-thickness dependent, low-emittance coating.   
 
“R” value:  Property of an insulation material or assembly used to characterize the effectiveness of the insulation in 
reducing heat transfer..  The higher the “R” value, the better the insulation’s ability to reduce this heat transfer. 
 
Radiation: Radiation is the transfer of heat or energy from a hot surface to a cold surface through air or through a 
vacuum. 
 
Radiant Barrier: A radiant barrier is a reflective material having a surface emittance of 0.1 or less used for the sole 
purpose of limiting heat transfer by radiation.  
 
Radiant Barrier System: A building construction consisting of a low emittance surface (0.1 or less, usually aluminum 
foil or metalized film) bounded by an open air space. 
 
Reflectance: Reflectance refers to the fraction of incoming radiant energy that is reflected from the surface. 
 
Reflective Insulation System: Reflective Insulation System is formed by a combination of low emittance surfaces 
and air spaces that provide reflective cavities which have low levels of radiant energy transmission. 
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APPENDIX A 
 

INTRODUCTORY COMMENTS ON THERMAL 
RESISTANCES FOR REFLECTIVE INSULATION SYSTEMS 

________________________________________________________________ 
 
Reflective insulation materials (RIMs) are available in a variety of forms that includes one or more low emittance 
(emissivity) surfaces.  The low emittance surfaces are generally provided by aluminum foils or deposited aluminum 
surfaces which exhibit very low emittances and high reflectances for long wavelength radiation.  The foils are 
attached to other materials for mechanical strength or support.  In some cases, supporting materials add to the 
thermal resistance of the reflective insulation system that is created upon installation of a reflective insulation in a 
building or vehicle cavity.  The following discussion of thermal resistances will be limited to one-dimensional heat flow 
across reflective air spaces. 
 
A reflective insulation system (RIS) is formed by a RIM positioned to form one or more enclosed air spaces.  A good 
RIS design will have at least one low-emittance major surface bounding each air space.  The purpose of the low-
emittance high-reflectance surfaces is to significantly reduce the radiative heat transfer across the enclosed air 
space.  The enclosed air spaces that make up a RIS are not ventilated.  There should be no air movement in or out 
of the enclosed space.  The reflective air spaces (enclosed spaces) are positioned so that the major surfaces are 
perpendicular to the anticipated heat flow direction.  When this is done, the thermal resistances of the air spaces in 
series are additive.  If the reflective insulation material has thermal resistance, then this resistance is added to that 
provided by the reflective air spaces. 
 
The thermal resistance for one-dimensional heat-flow through a series of n reflective air spaces is: 

 
RTOTAL = RAIRSPACE ONE + RAIRSPACE TWO + RAIRSPACE “n” + RREFLECTIVE MATERIAL 

 
Heat is transferred across air spaces by conduction and convection as well as radiation.  Convective heat transfer 
within the air space is related to the movement of air caused by temperature differences.  The density of air at 
constant pressure decreases as the temperature increases.  A temperature difference between two regions will result 
in air density differences which will result in buoyant forces and air movement or natural convection.  The magnitude 
of the buoyant forces increases as the temperature increases and the induced movement of  air depends on the 
buoyant force magnitude and its direction relative to gravity.  Since heat flow is in the direction of decreasing 
temperature, the direction of the buoyant force will depend on the orientation and temperatures of the bounding 
surfaces.  As a result, the convective contribution to the overall heat transfer depends on heat flow direction.  
Convective heat flow upward is the greatest, and convective heat flow down is the least and can be zero in an 
idealized system with stagnant air. 
 
Estimates of the thermal resistance of a single reflective air space that has parallel bounding surfaces perpendicular 
to the direction of heat flow can be made using the following equations. 
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( ) direction flow heat T, ,T ,  f = h mc ∆l  (4)  

 

∈i IR emittance for surface “i”, i = 1 or 2 

Ε Effective emittance for an air space 
hc Convective heat transfer coefficient, Btu/ft2�hr�°F 
hr Radiative heat transfer coefficient, Btu/ft2�hr�°F 
l Thickness of air space, inches 

Q Heat flux, Btu/hr�ft2 

Τµ Average of hot and cold surface temperatures, °F 

∆Τ Difference between hot and cold surface temperatures, °F 
 

Equation (1) expresses mathematically the fact that R-value depends on heat transfer by radiation, Ε�hr, and heat 

transfer by conduction-convection, hc.  The multiplying factor, Ε, is often called an effective emittance and takes on 

values between 0 and 1.  Its value depends on the emittances of the two major bounding surfaces, ∈i and ∈2, as 

shown by Equation (2).  The “Ε” value for an air space with one low-emittance aluminum boundary is very low, 
usually in the range 0.03 to 0.05. 
 

Equation (3) is the heat transfer coefficient for radiation, h r, between two parallel surfaces.  The hr is multiplied by “Ε” 
to introduce the effect of surface emittances.  Equation (2) has been derived for infinite parallel planes and discussed 
in most texts dealing with radiative heat transfer. 

 
The equation for hc is the complication in the R-value calculation.  Equation (4) indicates that hc depends (is a 
function of) four variables for one-dimensional heat flow between parallel surfaces.  Values for hc are developed from 
experimental data for total heat flow such as that obtained with a hot-box facility such as that described in ASTM C 

236.  The terms R, Ε, and hr are obtained from emittance and hot-box measurements.  Values for hc are derived from 
sets of hot box measurements done for a specific heat-flow direction.  Robinson and Powell (see references) have 
provided hc in graphical form and Yarbrough (see references) has provided hc in analytical form. 
 
One-dimensional heat flow and R-values between large parallel surfaces held at different temperatures and 
separated by distance “l” are established by the above equations and discussion.  The procedure has been used to 

generate the following three tables for single air space R-values for Τµ = 50°F and ∆Τ = 30°F.   These temperatures 
match the requirements of the FTC labeling rule for “single-sheet” products. 
 
Tables 1, 2, or 3 can be used to estimate the R-value for a RIS provided that the overall temperature difference 

across each element in the RIS is known.  The steady-state temperature difference (∆Τ) across each element is 
related to the R-values of the RIS elements, Ri, by Equation (5). 

 

R

T
*  R = T ii

∆
∆  (5) 

 

T  = T i

i

∆∆ ∑  (6) 

R  = R i

i

∑  

(7)Unfortunately, Ri values are related to ∆Τi.  The only known quantity in Equation (5) is the overall temperature 

difference ∆Τ.  An approach to solving for R is to first estimate the ∆Τi values.  This should be done in such a way 

that Equation (6) is satisfied.  Given a trial set of ∆Τi, the average temperature T in each element can be calculated 
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and Ri can then be estimated from Tables 1, 2, and 3.  This, of course, limits the accuracy since the tables are for 
50°F.   The total R is calculated by adding the Ri as indicated by Equation (7).  The calculated Ri are used to 

recalculate ∆Τi by means of Equation (5).  This iterative procedure is continued until constant values for ∆Τi and Ri 
are obtained. 
 
The calculational procedure can be improved by using the iterative procedure and Equation (1) to calculate Ri values.  
Table 4 has been prepared to expedite the calculation for a mean air space temperature of 75°F. 

 
 

Table 1.  Calculated R-Values for an Enclosed Air Space at 50°F 

and ∆Τ = 30°F -- Heat Flow Down 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 l Ε/ 0.030 0.050 0.100 0.150 0.250 0.500 0.750 0.820 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 0.50 2.63 2.51 2.25 2.04 1.72 1.24 0.97 0.91 
 0.75 3.72 3.48 3.01 2.64 2.13 1.44 1.08 1.01 
 1.00 4.69 4.32 3.61 3.10 2.42 1.56 1.15 1.07 
 1.25 5.57 5.06 4.11 3.46 2.63 1.65 1.20 1.11 
 1.50 6.36 5.70 4.53 3.75 2.80 1.71 1.23 1.14 
 1.75 7.03 6.23 4.86 3.98 2.92 1.76 1.25 1.16 
 2.00 7.60 6.68 5.12 4.15 3.01 1.79 1.27 1.18 
 2.25 8.08 7.04 5.34 4.29 3.09 1.81 1.28 1.19 
 2.50 8.49 7.36 5.51 4.41 3.15 1.83 1.29 1.20 
 3.00 9.15 7.84 5.78 4.58 3.23 1.86 1.31 1.21 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 
 

Table 2.  Calculated R-Values for an Enclosed Air Space at 50°F 

and ∆Τ = 30°F -- Heat Flow Horizontal 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 l Ε/ 0.030 0.050 0.100 0.150 0.250 0.500 0.750 0.820 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 0.50 2.41 2.31 2.09 1.91 1.63 1.19 0.93 0.88 
 0.75 2.88 2.74 2.43 2.19 1.83 1.29 1.00 0.94 
 1.00 2.76 2.63 2.35 2.12 1.78 1.27 0.98 0.93 
 1.25 2.67 2.55 2.28 2.07 1.74 1.25 0.97 0.92 
 1.50 2.62 2.50 2.25 2.04 1.72 1.24 0.97 0.91 
 1.75 2.60 2.48 2.23 2.02 1.71 1.23 0.96 0.91 
 2.00 2.59 2.47 2.22 2.02 1.70 1.23 0.96 0.90 
 2.25 2.58 2.47 2.22 2.02 1.70 1.23 0.96 0.90 
 2.50 2.59 2.47 2.22 2.02 1.71 1.23 0.96 0.91 
 3.00 2.61 2.49 2.24 2.03 1.72 1.23 0.96 0.91 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
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Table 3.  Calculated R-Values for an Enclosed Air Space at 50°F 

and ∆Τ = 30°F -- Heat Flow Up 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

 l Ε/ 0.030 0.050 0.100 0.150 0.250 0.500 0.750 0.820 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 0.50 1.61 1.56 1.46 1.37 1.22 0.95 0.78 0.75 
 0.75 1.69 1.64 1.53 1.43 1.27 0.98 0.80 0.76 
 1.00 1.76 1.70 1.58 1.47 1.30 1.00 0.82 0.78 
 1.25 1.81 1.75 1.62 1.51 1.33 1.02 0.83 0.79 
 1.50 1.85 1.79 1.66 1.54 1.35 1.03 0.84 0.79 
 1.75 1.89 1.83 1.69 1.57 1.37 1.05 0.84 0.80 
 2.00 1.92 1.86 1.71 1.59 1.39 1.06 0.85 0.81 
 2.25 1.95 1.88 1.74 1.61 1.40 1.06 0.86 0.81 
 2.50 1.98 1.91 1.76 1.63 1.42 1.07 0.86 0.82 
 3.00 2.02 1.95 1.79 1.66 1.44 1.09 0.87 0.82 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 

Table 4.  Conduction-Convection Coefficients, hc, for use in Equation (1) 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Heat Flow Down Width of Air Space (l, in.) 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
DT 0.5 1.0 1.5 2.0 2.5 3.0 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
5 0.359 0.184 0.126 0.097 0.080 0.068 
10 0.361 0.187 0.129 0.100 0.082 0.072 
15 0.363 0.189 0.131 0.101 0.085 0.075 
20 0.364 0.190 0.132 0.103 0.087 0.078 
25 0.365 0.191 0.133 0.105 0.090 0.081 
30 0.366 0.192 0.134 0.106 0.092 0.082 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Heat Flow Horizontal Width of Air Space (l, in.) 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
DT 0.5 1.0 1.5 2.0 2.5 3.0 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
5 0.360 0.204 0.169 0.179 0.185 0.189 
10 0.366 0.267 0.223 0.233 0.238 0.241 
15 0.373 0.247 0.261 0.271 0.275 0.276 
20 0.380 0.270 0.292 0.301 0.303 0.303 
25 0.387 0.296 0.317 0.325 0.327 0.326 
30 0.394 0.319 0.339 0.347 0.347 0.345 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Heat Flow Up Width of Air Space (l, in.) 

--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
DT 0.5 1.0 1.5 2.0 2.5 3.0 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
5 0.381 0.312 0.295 0.284 0.275 0.268 
10 0.429 0.381 0.360  0.346 0.336 0.328 
15 0.472 0.428 0.405 0.389 0.377 0.368 
20 0.511 0.465 0.440 0.423 0.410 0.400 
25 0.545 0.496 0.469 0.451 0.437 0.426 
30 0.574 0.523 0.494 0.475 0.460 0.449 
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Example 1. Calculation of Thermal Resistance for a Single Air Space. 
 

Specifications  Surface One: T = 70°F, ε1 = 0.03 

Surface Two: T = 80°F, ε2 = 0.80 
Space between surfaces, l, 2.0 inches 

Heat flow down 
 

Equation 2 for Ε Ε = (1/0.03 + 1/0.8 - 1)-1 = 0.0298 

Τµ = (70 + 80)/2 = 75 
DT = 80 - 70 = 10 

 
hc from Table 4 hc = 0.100 
hr from Equation 3 hr = 1.049 
R from Equation 1 R = (0.0298 x 1.049 + 0.100)-1 = 7.6 (ft2�h�°F/Btu) 

 
Example 2. Estimation of Thermal Resistance for Two One-inch Reflective Air Spaces in Series. 
 

Specifications: Air space 1: 1.0 inch wide 

Side one ε1 = 0.80 

Side two ε2 = 0.03 
 

Air space 2: 1.0 inch wide 

Side one ε1 = 0.03 

Side two ε2 = 0.80 
 

Cold side temperature 70°F 
Warm side temperature 80°F 

 
First Approximation for DT 

 
DT across air space 1: DT1 = 5°F 
DT across air space 2: DT2 = 5°F 

 
Use hc at mean temperature 75°F as an approximation. 

 

Τµ for air space 1:  72.5°F 

Τµ for air space 2:  77.5°F 

Ε1 = Ε2 = 0.0298 
 

From Table 4  hc1 = 0.184 
hc2 = 0.184 

 
From Equation 3 hr1 = 1.034 

hr2 = 1.064 
 

From Equation 1 R1 = 4.66 
R2 = 4.64 
R = R1 + R2 = 9.3 

 
Check approximation for DT 

DT1 = 10 x 4.66/9.3 = 5.01 
DT2 = 10 x 4.64/9.3 = 4.99 
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These DT values agree with the assumed values.  If the agreement is not satisfactory then the calculation should be 
repeated using the calculated DT values. 
 
Examples 1 and 2 show the approach used to calculate thermal resistances for an idealized system.  A more precise 
calculation can be carried out with a mathematical expression for hc rather than a table.  In most cases measured R 
values are less than those calculated for an idealized system. 
 
 


